Ä

УДК 539.3+620.22(075.8) ББК 22.251+30.3 Д47

Рецензенты: А. В. Плюснин, И. В. Станкевич

Димитриенко Ю. И.

Д47 Метод конечных элементов для решения локальных задач механики композиционных материалов : учеб. пособие / Ю. И. Димитриенко, А. П. Соколов. — М. : Изд-во МГТУ им. Н. Э. Баумана, 2010. — 66, [2] с. : ил.

Изложены основы метода асимптотического осреднения (метода Бахвалова — Победри) для задач теории упругости, а также основы метода конечных элементов для решения локальных задач теории упругости на «ячейке периодичности» и расчета эффективных упругих характеристик композитов. Даны вариационные формулировки задач теории упругости и задач на «ячейке периодичности». Представлены оригинальные результаты относительно метода решения локальных задач. Приведены примеры численного решения локальных задач и результаты моделирования полей микронапряжений для различных типов композиционных материалов: однонаправленно-армированных, 3D ортогонально-армированных, армированных по диагоналям куба и тканевых. Представлены результаты численного расчета полей концентрации микронапряжений в компонентах композитов.

Для студентов старших курсов, обучающихся по специальностям «Прикладная математика», «Прикладная механика», «Материаловедение», «Ракетостроение и космонавтика», изучающих дисциплины «Численные методы» и «Вычислительная механика».

УДК 539.3+620.22(075.8) ББК 22.251+30.3

© МГТУ им. Н. Э. Баумана, 2010

_____Оглавление _____

Введение		3
Глава 1.	Метод асимптотического осреднения для расчета эффективных упругих характеристик композиционных материалов	(
1.1	Система уравнений линейной теории упругости для пе-	,
1.1.	риодических структур	(
1.2.	Асимптотическое разложение системы уравнений линей-	
1.2	ной теории упругости	9 11
	Осреднение по «ячеике периодичности»	1.
	Осредненные уравнения теории упругости	12
	Разработка метода решения локальных задач на «ячей-	
	ке периодичности»	14
2.1.	Преобразование задачи на «ячейке периодичности» к за-	
	дачам для псевдоперемещений	14
	Формулировка задач на $1/8$ «ячейки периодичности»	18
	Явный вид граничных условий для задач L_{pq}	21
2.4.	Теорема о продолжении решения задачи L_{pq} на всю «ячейку периодичности»	24
Глава 3.	Расчет эффективных характеристик композиционных	
	материалов	27
3.1.	Эффективные определяющие соотношения композицион-	
2.2	ного материала	27
3.2.	Эффективные технические константы композиционного	20
2.2	материала	28
3.3.	Тензоры концентрации напряжений в компонентах композиционного материала	29
Глава 4	Метод конечных элементов для решения задач L_{pg}	31
	- 11	
	Вариационная формулировка локальной задачи L_{pq}	31 35
	Метод конечных элементов для задач L_{pq} Методы решения системы линейных алгебраических урав-	33
4.3.	нений	39
Гиара 5	Численное моделирование микронапряжений и эф-	<i>J</i> ;
тлава Э.	фективных упругих характеристик композиционных	
	материалов	40

. Ä

5.1.	Однонаправленно-армированные композиционные мате-	
	риалы	40
5.2.	Ортогонально-армированные композиты (3D-композиты)	48
5.3.	Композиты, армированные по диагоналям куба	53
5.4.	Тканевые композиты	5
Інтопотуро		