УДК 539.21 ББК 22.36 С 95

Рецензенты:

доктор химических наук, профессор Д. П. Валюхов, доктор технических наук, профессор А. Е. Панич

Сысоев И. А., Лунин Л. С.

С 95 Градиентная эпитаксия для получения микрои наноструктур твердых растворов $A^{III}B^V$ через тонкую газовую зону: монография. — Ставрополь: Изд-во СКФУ, 2015. - 97 с.

ISBN 978-5-9296-0785-1

В монографии представлены физико-химические основы градиентной эпитаксии (ГЭ) в газовой фазе через тонкую зону применительно к многокомпонентным соединениям $A^{III}B^V$. Приводится методика и алгоритм расчета по закономерностям роста эпитаксиальных слоев для многокомпонентных твердых растворов соединений $A^{III}B^V$. Обсуждаются возможности получения различных микро- и наноструктур соединений $A^{III}B^V$ с помощью ГЭ через газовую зону. Рассмотрено влияние различных технологических параметров (температура, температурный градиент, толщина зазора между источником и подложкой и т. д.) на свойства получаемых гетероструктур.

Монография адресована магистрам, асптирантам и преподавателям, а также исследователям, работающими в области технологии полупроводниковых материалов соединений A3B5 с микро- и наноструктурой.

Работа выполнена при финансовой поддержке гранта Минобрнауки России в рамках государственного задания по проекту №2014/16, код проекта: 2516.

> УДК 539.21 ББК 22.36

© Сысоев И. А., Лунин Л. С.

© ФГАО УВПО СевероКавказский Федеральный университет, 2015

ISBN 978-5-9296-0785-1

Введение

В данной работе рассматриваются физико-химические основы градиентной эпитаксии (ГЭ) в газовой фазе через тонкую зону применительно к многокомпонентным соединениям $A^{III}B^V$. Приводятся факторы, влияющие на процесс эпитаксиального роста в поле температурного градиента, а также особенности термодинамического анализа при массопереносе в газовой фазе твердых растворов $A^{III}B^V$. Рассматривается влияние состава и структуры источника при перекристаллизации на условия роста и распределение компонентов в твердых растворах $A^{III}B^V$ [23].

Приводится методика и алгоритм расчета по закономерностям роста эпитаксиальных слоев для многокомпонентных твердых растворов соединений $A^{III}B^V$. Рассматриваются результаты расчета распределения компонентов в эпитаксиальных слоях при различных технологических режимах.

Обсуждаются возможности получения различных микрои наноструктур соединений $A^{III}B^V$ с помощью ГЭ через газовую зону. Поскольку процесс диффузии в газовой области существенно интенсивнее, чем в жидкой фазе, изменение состава и соответственно, изменение параметров твердых растворов соединений $A^{III}B^V$ при изменении состава источника происходят быстрее, чем в жидкой зоне. Это обстоятельство позволяет получать гетероструктуры с более быстрым изменением параметров в области границ между твердыми растворами или соединениями.

Рассмотрено влияние различных технологических параметров (температура, температурный градиент, толщина зазора между источником и подложкой и т. д.) на свойства получаемых гетероструктур. Прежде всего, в зависимости от задачи, выполняемой полупроводниковой структурой, необходимо получать или ненапряженные эпитаксиальные пленки, или, напротив необходимые напряжения при соответствующих толщинах слоев. Это дает возможность формировать слои с минимальным количеством дислокаций, или наноструктуры (квантовые точки и т. д.) для широкого класса полупроводниковых приборов.

Содержание

Введение			
1	Осн	овные свойства гетероструктур твердых	
глава	растворов на основе соединений $A^{III}B^V$		
	1.1.	-	
		и трехкомпонентных гетероструктур	
		$coeдинeний A^{III}B^V$	4
	1.2.		
		гетероструктур соединений $A^{III}B^V$	9
2		овы градиентной эпитаксии	
глава	многокомпонентных твердых растворов $A^{III}B^V$		
	в га	зовой фазе	13
	2.1.	Особенности термодинамического анализа	
		при массопереносе в газовой фазе твердых	
		растворов $A^{\hat{I}\hat{I}}B^V$ в поле температурного	
		градиента	13
	2.2.	Моделирование процесса градиентной	
		эпитаксии через тонкую газовую зону	
		применительно к соединениям $A^{III}B^V$	24
3		нические аспекты получения	
глава		гокомпонентных соединений $\emph{A}^{III}\emph{B}^{V}$	
		одом градиентной эпитаксии через тонкую	
		вую зону	39
	3.1.	1 3, 1	
		градиентной газофазной эпитаксией	39
	3.2.	Система управления технологическим	
		процессом градиентной газофазной	
		эпитаксией	50
	3.3.	Особенности программного обеспечения	
		системы управления процессом градиентной	_
		эпитаксией	56

4	Особенности получения многокомпонентных				
глава	твердых растворов соединений $A^{III}B^V$ с микро-				
	и наноструктурой градиентной эпитаксией				
	через тонкую газовую зону				
	_	_ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `			
		через тонкую газовую зону применительно к соединениям $A^{III}B^V$	71		
	4.2.	Получение наноструктур многокомпонентных твердых растворов соединений $A^{III}B^V$			
		градиентной эпитаксией через тонкую			
		газовую зону	77		
Заключ	чение.		87		
			88		
_		означений	93		