ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРИКЛАДНОЙ ДИСКРЕТНОЙ МАТЕМАТИКИ

5-13

Биляк И. Б. Оценки числа появлений элементов на отрезках линейных рекуррентных последовательностей // ПДМ. 2013. № 1(19). С. 5–13.

14-16

Коломеец Н. А. О верхней оценке нелинейности некоторого класса булевых функций с максимальной алгебраической иммунностью // ПДМ. 2013. № 1(19). С. 14–16.

17-33

Шоломов Л. А. Двоичные представления недоопределённых данных и дизъюнктивные коды // ПДМ. 2013. № 1(19). С. 17–33.

МАТЕМАТИЧЕСКИЕ ОСНОВЫ КОМПЬЮТЕРНОЙ БЕЗОПАСНОСТИ

34-49

Семенова Н. А. Представление системы семантически осмысленного ролевого управления доступом в виде цветной сети Петри // ПДМ. 2013. № 1(19). С. 34–49.

50-68

Смольянинов В. Ю. Правила преобразования состояний СУБД ДП-модели // ПДМ. 2013. № 1(19). С. 50–68.

ПРИКЛАДНАЯ ТЕОРИЯ ГРАФОВ

69-83

Бадеха И. А. Исследование кликовых покрытий рёбер графа // ПДМ. 2013. № 1(19). С. 69–83.

84-92

Ураков А. Р., Тимеряев Т. В. Алгоритм поиска кратчайших путей для разреженных графов большой размерности // ПДМ. 2013. № 1(19). С. 84–92.

93-98

Ä

Цициашвили Г. Ш., Осипова М. А., Лосев А. С. Асимптотика вероятности связности графа с низконадёжными рёбрами // ПДМ. 2013. № 1(19). С. 93–98.

ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ В ДИСКРЕТНОЙ МАТЕМАТИКЕ

99-109

Колоколов А. А., Адельшин А. В., Ягофарова Д. И. Исследование задач дискретной оптимизации с логическими ограничениями на основе метода регулярных разбиений // ПДМ. 2013. № 1(19). С. 99–109.

110-116

Кузнецов А. А., Кузнецова А. С. Быстрое умножение элементов в конечных двупорождённых группах периода пять // ПДМ. 2013. № 1(19). С. 110—116.

117-124

Мурин Д. М. О верхней границе плотности инъективных векторов // ПДМ. 2013. № 1(19). С. 117—124.

№1(19)

2013

Теоретические основы прикладной дискретной математики

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРИКЛАДНОЙ ДИСКРЕТНОЙ МАТЕМАТИКИ

УДК 621.391.1:004.7

ОЦЕНКИ ЧИСЛА ПОЯВЛЕНИЙ ЭЛЕМЕНТОВ НА ОТРЕЗКАХ ЛИНЕЙНЫХ РЕКУРРЕНТНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

И.Б. Биляк

г. Москва, Россия

E-mail: bil-ib@mail.ru

Рассмотрен некоторый класс тригонометрических сумм от линейных рекуррентных последовательностей. Эти суммы исследуются с использованием метода В. М. Сидельникова. Получены оценки числа появлений элементов на отрезках линейных рекуррент, которые в некоторых случаях уточняют ранее известные результаты.

Ключевые слова: тригонометрические суммы, линейные рекуррентные последовательности, число появлений элементов.

Введение

Изучение числа появлений элементов в линейных рекуррентных последовательностях (ЛРП) над кольцами является одной из важных математических задач. Интерес к этой задаче связан прежде всего с построением на основе ЛРП генераторов псев-дослучайных чисел, использующих различные способы усложнения аналитического строения линейных рекуррент (см., например, [1]).

Пусть GF(q) — конечное поле из q элементов, $f(x) = x^m - a_{m-1}x^{m-1} - \ldots - a_1x - a_0$ — реверсивный $(a_0 \neq 0)$ неприводимый многочлен степени m над этим полем. Линейной рекуррентной последовательностью над полем GF(q) с характеристическим многочленом f(x) будем называть последовательность $u = u(0)u(1)u(2)\ldots$ элементов этого поля, удовлетворяющую соотношению

$$u(i+m) = a_0 u(i) + a_1 u(i+1) + \dots + a_{m-1} u(i+m-1), \quad i \geqslant 0.$$

Каждая такая ненулевая ЛРП u является чисто периодической последовательностью, при этом её период T(u) равен периоду T(f) многочлена f(x) и делит $q^m - 1$ (см., например, [2]).

Рассмотрим линейные рекуррентные последовательности u_1, u_2, \ldots, u_r с характеристическим многочленом f(x). Назовём эти последовательности линейно независимыми над полем GF(q), если для всех ненулевых векторов $\bar{c}=(c_1,c_2,\ldots,c_r)\in GF(q)^r$ последовательность $c_1u_1+c_2u_2+\ldots+c_ru_r$ является ненулевой. Обозначим через $N_l(\bar{z},u_1,\ldots,u_r)$ количество целых чисел $i\in\{0,1,\ldots,l-1\}$, удовлетворяющих условиям $u_1(i)=z_1,u_2(i)=z_2,\ldots,u_r(i)=z_r$, где $\bar{z}=(z_1,z_2,\ldots,z_r)\in GF(q)^r$. Таким образом, величина $N_l(\bar{z},u_1,\ldots,u_r)$ равна количеству появлений r-граммы \bar{z} на отрезке длины l последовательности векторов, элементы которой имеют вид $(u_1(i),u_2(i),\ldots,u_r(i))$ для всех $i\geqslant 0$.

Ä