Ϊ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Л. И. Захарченко, В. В. Захарченко

ГЕОФИЗИЧЕСКИЕ МЕТОДЫ КОНТРОЛЯ РАЗРАБОТКИ МПИ

УЧЕБНОЕ ПОСОБИЕ

Специальность 21.05.03 Технология геологической разведки

Специализация «Геофизические методы исследования скважин»

Ставрополь 2017

Ä

УДК 550.832 (075.8) ББК 33.36 я73 3 38 Печатается по решению редакционно-издательского совета Северо-Кавказского федерального университета

Захарченко Л. И., Захарченко В. В.

3 38 **Геофизические методы контроля разработки МПИ:** учебное пособие. — Ставрополь: Изд-во СКФУ, 2017. — 249 с.

Пособие составлено в соответствии требованиями Федерального государственного образовательного стандарта, учебным планом и программой дисциплины.

Содержит курс лекций, включающих теоретический материал о геофизических методах исследования при контроле за разработкой месторождений нефти и газа, необходимых видах исследования для изучения эксплуатационных характеристик и физических свойств пласта, определения состояния цементного кольца, обсадной колонны и лифтовых труб, определения состава и скорости движения смеси в стволе, в лифтовых трубах и межтрубном пространстве; а также перечень задач, решаемых с помощью ГИС.

Предназначено для студентов, обучающихся по специальности 21.05.03 «Технология геологической разведки». Кроме того может быть использовано для обучения магистров направления 21.04.01 Нефтегазовое дело (программа «Геолого-геофизические методы решения проблем освоение месторождений нефти и газа»).

УДК 550.832 (075.8) ББК 33.36 я73

Рецензенты:

ст. преп. кафедры СНГС **В. А. Пономаренко,** зав. лаб. сейсмической интерпретации **А. В. Савинов** (ООО «НК Роснефть»-НТЦ»)

© ФГАОУ ВО «Северо-Кавказский федеральный университет», 2017

Ä

СОДЕРЖАНИЕ

Предисловие4
Раздел I.
Основы разработки нефтяных и газовых месторождений8
1. Распределение углеводородов по высоте залежи8
2. Понятие о контурах нефтеносности и водонефтяной зоны залежей 10
3. Режимы разработки нефтяных месторождений11
4. Крепление скважин
•
Раздел II.
Геофизические исследования в эксплуатационных, нагнетательных
и наблюдательных скважинах
1. Задачи контроля за разработкой22
2. Методы ГИС с целью решения поставленных задач
при контроле разработки25
3. Типичные варианты нарушения технического состояния
технической и эксплуатационной колонн27
4. Исследование технического состояния скважин
5. Геофизические исследования цементного кольца93
6. Выявление интервалов затрубной циркуляции
7. Скважинная дебитометрия142
8. Определение состава смеси поступающей из пласта 156
9. Комплексирование методов с целью прослеживания ВНК, ГВК, ГНК177
10. Комплексирование методов с целью определения профиля
притока и источника обводнения192
Раздел III.
Методы интенсификации притока
1. Взрывные методы интенсификации притока 200
2. Химическое воздействие на призабойную зону пласта
3. Механическое воздействие на призабойную зону пласта
4. Тепловое воздействие на призабойную зону пласта
 тепловое воздействие на призаобиную зону пласта
5. Плазменно-импульсное воздеиствие на пласт
Раздел IV.
Электрический каротаж в колонне
1. Задачи, решаемые электрическим каротажом в колонне
2. Алгоритм решения поставленной задачи
3. Функциональная схема измерений
Литература и интернет-ресурсы

ПРЕДИСЛОВИЕ

Цель изучения дисциплины – дать понятие об общих принципах и научных основах определения профиля, дебита и состава притока, технического состояния колонны и заколонного пространства, методах интенсификации притока.

Основными задачами изучения дисциплины, в соответствии с требованиями ФГОС ВО, являются:

- ознакомление с общими принципами и научными основами определения методов геофизических исследований скважин (ГИС), включаемых в рациональный комплекс, применительно к решению определенной задачи в эксплуатационной, нагнетательной или наблюдательной скважине с целью изучения эксплуатационных характеристик и физических свойств пласта;
- изучение методов ГИС-контроля, аппаратуры, методики проведения исследований и интерпретации данных с целью определения состояния цементного кольца, обсадной колонны и лифтовых труб;
- изучение методов ГИС-контроля, аппаратуры, методики проведения исследований и интерпретации данных с целью определения состава и скорости движения смеси в стволе, в лифтовых трубах и межтрубном пространстве.

В результате изучения курса обучающийся должен овладеть следующими компетенциями:

- ОК-2 обобщение, анализ, восприятие информации, способность поставить цели и выбрать пути ее достижения;
- OK-6 способность проявлять инициативу, находить организационно-управленческие решения и нести за них ответственность;
- ОК-7 использование нормативных правовых документов в своей деятельности;
- ОК-11 осознание социальной значимости своей будущей профессии, наличием высокой мотивации к выполнению профессиональной деятельности;
- ОК-12 критическое осмысление накопленного опыта, изменение при необходимости профиля своей профессиональной деятельности;

- ПК-2 самостоятельное приобретение новых знаний и умений с помощью информационных технологий и использованием их в практической деятельности, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности;
- ПК-6 самостоятельное принятие решения в рамках своей профессиональной компетенции, готовность работать над междисциплинарными проектами;
- ПК-8 владение основными методами, способами и средствами получения, хранения, переработки информации, наличие навыков обработки данных и работы с компьютером как средством управления информацией;
- ПК-19 выполнение разделов проектов на технологии геологической разведки в соответствии с современными требованиями промышленности;
- ПК-20 организация контроля выполнения разрабатываемых проектов на проведение геологической разведки;
- ПК-22 владение современными технологиями автоматизации проектирования систем и их сервисного обслуживания;
- ПК-27 способность выполнять наукоемкие разработки в области создания новых технологий геологической разведки, включая моделирование систем и процессов, автоматизацию научных исследований;
- ПК-34 внедрение автоматизированных систем управления;
- ПК-35 способность систематизировать и внедрять безопасные методы ведения геологоразведочных работ, ведение целенаправленной работы по снижению производственного травматизма;
- ПСК-2.5 способность разрабатывать комплексы геофизических исследований и методики их применения в зависимости от изменяющихся геолого-технических условий и поставленных задач изучения разрезов скважин и контроля разработки МПИ;
- ПСК-2.9 способность проводить математическое моделирование и исследование геофизических процессов и объектов специализированными геофизическими информационными системами, в том числе стандартными пакетами программ.

С началом искусственного заводнения нефтенасыщенных пластов появилась необходимость промыслово-геофизического контроля (ПГК) за процессом разработки месторождений. Наряду с ГИС в открытом стволе, по результатам которых получали первичные данные для составления технологических схем разработки, назрела необходимость контроля за подсчётными параметрами в процессе выработки запасов.

Широкое распространение среди методов контроля на начальной стадии получили ядерные методы, в частности радиометрический контроль за гипсометрическим положением водонефтяного контакта (ВНК), импульсный нейтронный каротаж и закачка в пласт активных жидкостей. Дальнейшее развитие при ГИС-контроле получили промыслово-геофизические исследования (ПГИ) при планировании и проведении геолого-технических мероприятий (ГТМ) на эксплуатационном фонде скважин, волновые акустические методы, тепловые методы (термометрия).

В настоящее время методы ГИС-контроля комплексируются с гидродинамическими методами исследований скважин (ГДИС), что значительно повысило эффективность проводимых исследований. Сущность ГДИС заключается в использовании стационарных и нестационарных процессов, возникающих при эксплуатации добывающих и нагнетательных скважин. В принципе, ГДИС имеют много общего в технологическом отношении с ПГИ. Поэтому многие учёные предлагают объединить их под названием «гидродинамико-геофизические исследования» (ГГИ).

Предметом (или объектом познавательной деятельности) в ГИС-контроле является эксплуатационная, нагнетательная или наблюдательная скважина, продуктивный пласт. Задачи ГИС-контроля – определение технического состояния эксплуатационной, нагнетательной или наблюдательной скважины, контроль за изменением подсчетных параметров пласта-коллектора, контроль за добычей из продуктивного пласта в процессе разработки месторождения нефти или газа, интенсификация притока нефти или газа.

В то же время в данной области развивается направление по контролю за техническим состоянием обсаженного ствола скважины (профилеметрия, дефектоскопия, цементометрия и др.); промысловых технических измерений (замер дебитов, устьевых и забойных

давлений, динамических и статических уровней, отбора и анализа проб флюидов и т. д.); гидропрослушивание методом трассирования; вертикального сейсмопрофилирования (ВСП). Все они объединяются в группу промыслового контроля (ПК). В пособии дано научное обоснование применения методов воздействия на прискважинную зону пластов (ПЗП) и эффективных технологий в области строительства, эксплуатации скважин и увеличения нефтеотдачи пластов.

Большое внимание в пособии также уделено геофизическим и гидродинамическим методам контроля при проведении геолого-технических мероприятий на месторождениях и контроля технического состояния скважин при их эксплуатации и разработке месторождений.

Настоящее издание обобщает многолетний опыт авторов по данной дисциплине, а также материалы предыдущих изданий и фондовых материалов.