УДК 681.3(075.8) ББК 32.85я73 Ч-60

Р е ц е н з е н т ы : Заслуженный деятель науки РФ, доктор техн. наук, профессор \mathcal{A} . А. Безуглов, доктор техн. наук, доцент \mathcal{B} . А. Погорелов

Чикалов А. Н., Соколов С. В., Титов Е. В.

Ч-60 Схемотехника телекоммуникационных устройств: Учебное пособие для вузов / Под редакцией С. В. Соколова. – М.: Горячая линия – Телеком, 2016 – 322 с.: ил.

ISBN 978-5-9912-0514-6.

Последовательно изложены как принципы построения и работы основных типов аналоговых усилителей, так и наиболее часто используемых схем, построенных на их основе. Приведена и подробно рассмотрена схемотехника базовых цифровых функциональных элементов телекоммуникационных систем и систем обработки информации.

Материал, представленный в пособии, имеет практическую направленность и позволяет обеспечить формирование необходимых компетенций обучающихся.

Для студентов, обучающихся по направлению подготовки 11.03.02, 11.04.02 — «Инфокоммуникационные технологии и системы связи» квалификации «бакалавр», «магистр» и 11.05.04 — «Инфокоммуникационные технологии и системы специальной связи» квалификации «специалист», может быть также использовано для изучения дисциплины «Схемотехника» по направлению «Информатика и вычислительная техника».

ББК 32.85я73

Адрес издательства в Интернет WWW.TECHBOOK.RU

Учебное издание

Чикалов Андрей Николаевич, **Соколов** Сергей Викторович, **Титов** Евгений Валимович

Схемотехника телекоммуникационных устройств

Учебное пособие для вузов

Все права зашищены.

Любая часть этого издания не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами без письменного разрешения правообладателя © ООО «Научно-техническое издательство «Горячая линия – Телеком» www.techbook.ru

© А. Н. Чикалов, С. В. Соколов, Е. В. Титов

Оглавление

ВВЕДЕНИЕ	3
Список принятых сокращений	3
Глава 1. ОБЩИЕ СВЕДЕНИЯ ОБ АНАЛОГОВЫХ ЭЛЕКТРОННЫХ	
УСТРОЙСТВАХ	5
1.1. Основные определения	5
1.2. Классификация аналоговых электронных устройств	
1.3. Основные технические показатели и характеристики аналоговых	
электронных устройств	
1.3.1. Общие сведения. Стандартизация и унификация	8
1.3.2. Входное и выходное сопротивления. Коэффициенты	
усиления	9
1.3.3. Амплитудно- и фазочастотная характеристики	11
1.3.4. Переходная характеристика	14
1.3.5. Амплитудная характеристика и динамический диапазон	15
1.3.6. Нелинейные искажения	
1.3.7. Коэффициент полезного действия	
1.3.8. Собственные помехи	
1.3.9. Специфические показатели электронных устройств	
1.3.10. Стабильность показателей	
Глава 2. ОБРАТНАЯ СВЯЗЬ В УСИЛИТЕЛЯХ	
2.1. Классификация обратных связей в усилителях	22
2.2. Анализ влияния отрицательной обратной связи на примере	
последовательной обратной связи по напряжению	23
2.3. Разновидности отрицательных обратных связей и анализ их	
влияния	
Глава 3. УСТОЙЧИВОСТЬ УСИЛИТЕЛЕЙ	31
3.1. Определение устойчивости и условия устойчивости линейных	
усилителей. Теорема Ляпунова об устойчивости	31
3.2. Критерий устойчивости Найквиста	38
3.3. Анализ устойчивости усилителей по их логарифмическим	
частотным характеристикам	
Глава 4. АНАЛИЗ И СИНТЕЗ СХЕМ УСИЛИТЕЛЬНЫХ КАСКАДОВ.	
4.1. Усилительный каскад по схеме с общим эмиттером	
4.1.1. Принцип работы и основные параметры	
4.1.2. Понятие о классах усиления усилительных каскадов	
4.1.3. Методы стабилизации рабочей точки (начальных условий	
работы каскада)	
4.2. Схемы стабилизации рабочей точки	
4.3. Апериодический усилительный каскад	
4.4. Многокаскадные усилители	13

Ä

4.4.1. Типы усилителей	76
4.4.2. Усилители с RC-связями	
4.4.3. Трансформаторная межкаскадная связь	
4.4.4. Усилители с непосредственными межкаскадными связями	
4.4.5. Усилители с гальваническими межкаскадными связями	
4.4.6. Оптроны как элементы межкаскадных связей	~ _
и гальванических развязок	83
Глава 5. ШИРОКОПОЛОСНЫЕ (ИМПУЛЬСНЫЕ) УСИЛИТЕЛЬНЫЕ	
КАСКАДЫ	85
5.1. Импульсный режим работы и цифровое представление	
преобразуемой информации	85
5.1.1. Основные сведения и определения	
5.1.2. Описание импульсных сигналов	
5.2. Цифровые ключи на биполярных транзисторах	
5.3. Ненасыщенные цифровые ключи на биполярных транзисторах	
5.4. Частотная коррекция и основные принципы ее организации	
5.5. Динамические искажения в схемах с обратными связями	
Глава 6. ОКОНЕЧНЫЕ УСИЛИТЕЛЬНЫЕ КАСКАДЫ	
6.1. Общие сведения об усилителях мощности (мощных выходных	٠.
усилителях)	04
6.2. Трансформаторные усилители мощности	
6.2.1. Однотактный усилитель мощности	
6.2.2. Двухтактные усилители мощности	
6.3. Бестрансформаторные усилители мощности	
Глава 7. СХЕМЫ НА ОСНОВЕ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ 1	
7.1. Инвертирующий усилитель на основе ОУ	
7.2. Неинвертирующий усилитель на основе ОУ	
7.3. Повторитель напряжения на основе OУ	
7.4. Сумматор напряжений (инвертирующий сумматор)	
7.5. Вычитающий усилитель (усилитель с дифференциальным	
входом)	23
7.6. Суммирующе-вычитающее устройство	25
7.7. Интегрирующее устройство	26
7.8. Интегрирующий сумматор	
7.9. Дифференцирующее устройство	
7.10. Дифференцирующий сумматор	
7.11. Нелинейные устройства на базе ОУ с нелинейной цепью	_,
обратной связи	29
7.12. Компараторы сигналов	
Глава 8. УСТРОЙСТВА РЕГУЛИРОВКИ УСИЛЕНИЯ,	٠.
ПЕРЕМНОЖЕНИЯ И ДЕЛЕНИЯ СИГНАЛОВ1	39
8.1. Регуляторы усиления	39
8.1.1. Назначение и место включения	

Ä

Оглавление

Ослибление	J21
8.1.2. Потенциометрические и режимные регуляторы	140
8.1.3. Регуляторы в схемах на ОУ	143
8.2. Основные назначения и специфические показатели аналоговых	K
перемножителей	
8.3. Перемножители на дифференциальных каскадах с управляемы	
усилением	
8.4. Перемножители и делители на основе управляемых	
сопротивлений	150
8.5. Другие принципы построения перемножителей	
8.6. Применение аналоговых перемножителей	
Глава 9. АКТИВНЫЕ ФИЛЬТРЫ	
9.1. Общее математическое описание фильтров	
9.2. Классификация фильтров по виду их амплитудно-частотных	. 10,
характеристик	161
9.3. Классификация фильтров по особенностям полиномов, входяц	іих
в передаточные функции	
9.4. Особенности проектирования активных фильтров	
Глава 10. ГЕНЕРАТОРЫ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ	
10.1. RC-генераторы с мостом вина	
10.2. Кварцевые генераторы	
Глава 11. ГЕНЕРАТОРЫ ИМПУЛЬСНЫХ СИГНАЛОВ	
11.1. Генераторы прямоугольных импульсов	
11.2. Генераторы линейно-изменяющегося напряжения	189
Глава 12. ЦИФРОВЫЕ УСТРОЙСТВА	
12.1. Классификация интегральных микросхем	
12.2. Система условных обозначений ИМС	
12.3. Логические элементы	
12.3.1. Базовый элемент ТТЛ-серии	
12.3.2. ИМС на полевых транзисторах	
12.3.3. Параметры и характеристики логических элементов	
12.3.4. Специальные типы логических элементов	215
12.3.5. Состав серий ИМС	
12.3.6. Правила схемного включения элементов	
12.3.7. Оценка качества функциональных схем	
12.3.8. Условия совместного использования различных	
серий ИМС	226
12.4. Триггеры	
12.4.1. Асинхронный RS-триггер	
12.4.2. Синхронный RS-триггер со статическим управлением	
12.4.3. <i>D</i> -триггер со статическим управлением	
12.4.4. Синхронный RS-триггер с динамическим управлением.	
12.4.5. Синхронный D-триггер с динамическим управлением	
12.4.6. ЈК-триггер	
· · · · r · · · · · · · · · · · ·	

12.4.7. Т-триггер	
12.4.8. Взаимное преобразование триггеров	237
12.5. Дешифраторы	
12.5.1. Построение дешифраторов	239
12.5.2. Дешифраторы в интегральных сериях	
12.5.3. Наращивание дешифраторов	
12.6. Мультиплексоры	
12.6.1. Построение мультиплексоров	
12.6.2. Наращивание мультиплексоров	
12.6.3. Синтез комбинационных схем на основе	
мультиплексоров	249
12.7. Сумматоры	
12.7.1. Построение сумматоров	
12.7.2. Схемы переносов в многоразрядных сумматорах	
12.8. Регистры.	
12.8.1. Классификация регистров	
12.8.2. Принципы построения регистров	
12.8.3. Особенности микросхем регистров различных типов	
12.8.4. Применение регистров	
12.9. Счетчики	
12.9.1. Классификация счетчиков	
12.9.2. Принципы построения счетчиков	
12.9.3. Счетчики с произвольным модулем счета	
12.9.4. Особенности микросхем счетчиков различных типов	
12.9.5. Применение счетчиков	
Глава 13. СХЕМОТЕХНИКА АНАЛОГО-ЦИФРОВЫХ И ЦИФРО-	
АНАЛОГОВЫХ ПРЕОБРАЗОВАТЕЛЕЙ ИНФОРМАЦИИ	284
13.1. Назначение, основные свойства и классификация	
13.2. Основные характеристики ЦАП и АЦП	
13.3. Цифро-аналоговые преобразователи	
13.4. Аналого-цифровые преобразователи	
Глава 14. КОМПЬЮТЕРНЫЙ АНАЛИЗ И СИНТЕЗ ЭЛЕКТРОННЫХ	-/ .
УСТРОЙСТВ	300
14.1. Математическое моделирование электронных устройств	
14.1.1. Математические модели диодов и их использование	500
для анализа электронных схем	302
14.1.2. Математические модели биполярного транзистора	
14.1.3. Математические модели полевого транзистора	
14.2. Особенности математического моделирования различных	700
режимов работы электронных устройств	310
14.3. Уровень современных систем математического моделирования	a a
электронных устройств	
Питепатура (