УДК 53.09 ББК 22.31 И 20

> Печатается по решению редакционно-издательского совета Южного федерального университета

Рецензенты:

профессор, доктор физико-математичских наук B. Φ . Kравченко; профессор, доктор физико-математичских наук Γ . Φ . Sаргано; кандидат физико-математичских наук C. Π . Sинченко

Учебное пособие подготовлено и издано в рамках национального проекта «Образование» по «Программе развития федерального государственного образовательного учреждения высшего профессионального образования "Южный федеральный университет" на 2007–2010 гг.»

Иванов, И. Г.

И 20 Основы квантовой электроники: учебное пособие / И. Г. Иванов. – Ростов-на-Дону: Издательство ЮФУ, 2011. – 174 с. ISBN 978-5-9275-0873-0

В учебном пособии на современном уровне, последовательно и в сжатой форме излагаются общие принципы усиления и генерации электромагнитных колебаний в квантовых системах с использованием явления индуцированного излучения, а также сущность известных методов получения инверсии населенностей квантовых состояний в различных средах. Кратко описаны принципиальные конструктивные особенности лазеров и мазеров, методы управления характеристиками лазерного излучения, при этом основное внимание уделяется тем типам приборов и устройств квантовой электроники, которые составляют основу современной лазерной техники, описаны важнейшие их применения. Каждый раздел содержит контрольные задания и тестовые вопросы самоконтроля.

Для студентов и аспирантов физических и технических специальностей вузов, научно-технических работников и всех интересующихся вопросами лазерной физики и техники.

УДК 53.09 ББК 22.31

ISBN 978-5-9275-0873-0

[©] Южный федеральный университет, 2011

[©] Иванов И. Г., 2011

[©] Оформление. Макет. Издательство Южного федерального университета, 2011

содержание

ПРЕДИСЛОВИЕ 3
1. ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ. КОЭФФИЦИЕНТЫ ЭЙНШТЕЙНА ДЛЯ КВАНТОВЫХ ПЕРЕХОДОВ. УШИРЕНИЕ СПЕКТРАЛЬНЫХ ЛИНИЙ. ПОГЛОЩЕНИЕ И УСИЛЕНИЕ СВЕТА. ИНВЕРСИЯ
НАСЕЛЕННОСТЕЙ
1.1. О гипотезе квантов света
в квантовых системах
1.5. Релаксационные переходы
1.8. Интегральная вероятность перехода с учетом формы линии
1.9. Поглощение излучения средой. Эффект насыщения поглощаемой мощности
1.10. Коэффициент поглощения, влияние насыщения на форму контура линии поглощения
Коэффициент усиления
1.13. Принцип усиления света квантовой системой
2. ОТКРЫТЫЕ ОПТИЧЕСКИЕ РЕЗОНАТОРЫ ЛАЗЕРОВ И ИХ СВОЙСТВА
2.1. Принципы создания резонатора оптического диапазона. 37
2.2. Пассивный ООР в приближении плоской волны
2.4. Типы колебаний (моды) пассивного ООР
линии на модовыи состав излучения лазера

Содержание

2.6. Мощность на выходе лазера, оптимальное пропускание
выходного зеркала
2.7. Методы селекции мод 51
2.8. Одночастотный режим работы лазера 53
Задания и упражнения
Вопросы для самоконтроля (тест)
3. РЕЖИМЫ РАБОТЫ ЛАЗЕРОВ
3.1. Импульсный «режим свободной генерации»,
генерация «пичков» 61
3.2. Импульсный режим за счет модуляции
добротности ООР
3.3. Режим синхронизации мод для генерации
сверхкоротких импульсов
Задания и упражнения
Вопросы для самоконтроля (тест)71
4. ГАЗОВЫЕ ЛАЗЕРЫ
4.1. Условие создания инверсии населенностей 74
4.2. Лазеры, накачиваемые в газоразрядной плазме
столкновениями с электронами первого рода
4.3. Лазеры с накачкой неупругими столкновениями
второго рода между частицами
в газоразрядной плазме83
4.4. Накачка ударным возбуждением и ион-ионной
рекомбинацией, эксимерные лазеры99
4.5. Тепловая накачка, газодинамический лазер 101
4.6. Накачка в химической реакции 103
4.7. Оптическая накачка газовых активных сред 105
Задания и упражнения
Вопросы для самоконтроля (тест)
5. ЛАЗЕРЫ НА ОСНОВЕ КОНДЕНСИРОВАННЫХ СРЕД 113
5.1. Специфика оптической накачки активной
среды лазера
5.2. Квантовые приборы с оптической накачкой,
работающие по «трехуровневой схеме» 115

172

Содержание

5.3. Лазеры с оптической накачкой, работающие
по «четырехуровневой схеме»
5.4. Параметрическая генерация света
5.5. Полупроводниковые лазеры
Задания и упражнения
Вопросы для самоконтроля (тест)
6. ВАЖНЕЙШИЕ ПРИМЕНЕНИЯ ЛАЗЕРОВ И ДРУГИХ
ПРИБОРОВ КВАНТОВОЙ ЭЛЕКТРОНИКИ 146
6.1. Области применения лазеров
6.2. Оптическая голография
6.3. Квантовые эталоны и стандарты частоты в СВЧ
и оптическом диапазонах
6.4. Резонансное возбуждение частиц. Селективное
возбуждение изотопов
6.5. Генерация импульсов света ультракороткой
длительности
Задания и упражнения
Вопросы для самоконтроля (тест)
ПРАВИЛЬНЫЕ ОТВЕТЫ К ТЕСТАМ 166
СПИСОК РЕКОМЕНДОВАННОЙ ЛИТЕРАТУРЫ 168
СПИСОК ИСПОЛЬЗУЕМЫХ СОКРАЩЕНИЙ