Ä

ББК В36(2Рос.Калм)я73+В36я73 УДК 53(076) Л 557

Лиджиев, Б. С.

Лабораторный практикум по общей физике: в 2-х ч.: Ч. 2. Молекулярная физика [Текст]: учебное пособие / Б. С. Лиджиев, В. А. Очиров; под. ред. В. А. Очирова. – Элиста: Изд-во Калм. ун-та, 2014. – 116 с.

Печатается по решению редакционно-издательского совета ФГБОУ ВПО «Калмыцкий государственный университет»

Учебное пособие составлено в соответствии с ПООП, разработанной УМО по классическому университетскому образованию на основе ФГОС ВПО по направлению 011200.62 «Бакалавр физики» в рамках базовой части профессионального цикла.

Предлагаемое пособие является руководством к выполнению лабораторных работ по общей физике для студентов первого курса физического отделения факультета математики, физики и информационных технологий Калмыцкого государственного университета и содержит необходимые для усвоения программного материала теоретические сведения, описания экспериментальных установок, порядок проведения измерений и перечень заданий для студентов в каждом описании лабораторной работы, контрольные вопросы для самопроверки.

Редактор

канд. физ.-мат. наук, доцент кафедры экспериментальной и общей физики Калмыцкого государственного университета В. А. Очиров

Рецензенты:

доктор физ.-мат. наук, профессор, зав. лабораторией физики Солнца Главной (Пулковской) астрономической обсерватории РАН А.А. Соловьев;

доктор технических наук, доцент Астраханского государственного университета А.М. Лихтер

© ФГБОУ ВПО «Калмыцкий государственный университет», 2014 © Лиджиев Б. С., Очиров В. А., 2014

СОДЕРЖАНИЕ

Предисловие	4
1. Уравнение состояния идеального газа. Определение	
универсальной газовой постоянной методом откачки	5
2. Определение отношения теплоёмкостей воздуха методом	
Клемана-Дезорма	11
3. Определение удельной теплоёмкости жидкости	. 19
4. Определение удельной теплоёмкости металлов методом	
охлаждения	. 24
5. Определение удельной теплоёмкости твёрдого тела методом	
нагрева	. 32
6. Определение скорости распространения ультразвуковых	
колебаний и модуля Юнга в твёрдых телах	. 36
7. Изучение теплового расширения твёрдых тел	. 45
8. Изучение зависимости скорости звука в воздухе от температуры	
резонансным методом и определение отношения теплоёмкостей	
$\gamma = C_{\rm P}/C_{ m V}$. 50
9. Определение коэффициента вязкости воздуха и газокинетических	
параметров молекул капиллярным методом	. 54
10. Изучение взаимной диффузии газов	. 63
11. Измерение коэффициента теплопроводности воздуха	. 67
12. Определение коэффициента внутреннего трения жидкости по	
методу Стокса	. 73
13. Определение вязкости жидкости по скорости истечения через	
капилляр	. 77
14. Определение коэффициента теплопроводности твёрдых тел	
15. Определение абсолютной и относительной влажности воздуха	. 87
16. Определение удельной теплоты перехода воды в пар при	
температуре кипения	. 93
17. Изучение зависимости давления насыщенных паров жидкости	
от температуры и определение теплоты парообразования	. 99
18. Изучение фазовых переходов 1 рода. Определение изменения	
энтропии при нагревании и плавлении металла	108