УДК 57 (075.8) ББК 28.07 я73 О 75 Печатается по решению редакционно-издательского совета Северо-Кавказского федерального университета

О 75 Основы нанобиотехнологии. Фундаментальные основы нанобиотехнологий: учебное пособие / авт.-сост.: Е. В. Будкевич, Р. О. Будкевич. – Ставрополь: Изд-во СКФУ, 2016. – 160 с.

Пособие разработано в соответствии с требованиями ФГОС ВО к подготовке выпускника для получения квалификации бакалавр, учебным планом и программой дисциплины. Содержит теоретический материал по курсу в области фундаментальных понятий нанобиотехнологии, контрольные вопросы, глоссарий, список сокращений и аббревиатур, литературу.

Предназначено для студентов, обучающихся по направлению подготовки 22.03.01 – Материаловедение и технологии материалов.

УДК 57 (075.8) ББК 28.07 я73

Авторы-составители:

канд. мед. наук, доцент Е. В. Будкевич, канд. биол. наук, доцент Р. О. Будкевич

Рецензенты:

д-р техн. наук, профессор **А. Д. Лодыгин,** д-р вет. наук, профессор **Л. Д. Тимченко** (ГБОУ ВПО СтГМУ Минздрава России)

ФГАОУ ВО «Северо-Кавказский федеральный университет», 2016

СОДЕРЖАНИЕ

Предисловие	5
Раздел 1. Основные понятия биомедицинской нанотехнологии. Квантово-механическое описание физических свойств атомно-молекулярных объектов живых систем	
1.1. Введение. История и терминология нанобиотехнологий 1.2. Современные направления развития	9
нанобиотехнологий	11
в биоструктурах	13
биообъектов	25
Раздел 2. Нуклеиновые кислоты как носитель наследственной информации и материал нанобиотехнологии	
 2.1. Введение. Основные сведения о строении живой клетки 2.2. Виды и функции нуклеиновых кислот 2.3. Пространственная организация нуклеиновых кислот 2.4. Получение нуклеиновых кислот 2.5. Репликация ДНК 2.6. Технология рекомбинантных ДНК. 2.7. Нанотехнологии на основе нуклеиновых кислот 	45 51 58 62 66 70 79
Раздел 3. Белковые макромолекулы как материал	
для нанотехнологий 3.1. Введение. Химическое строение белка	89

Основы нанобиотехнологии. Фундаментальные основы нанобиотехнологий

Раздел 4. Клеточная мембрана и основы процесса самосборки в биологических системах	
4.1. Биологические мембраны	126
через биологическую мембрану	133
4.3. Самосборка в искусственных и биологических системах	142
Заключение	151
Литература	153
Глоссарий	156
Список сокращений и аббревиатур	159

ПРЕДИСЛОВИЕ

Происшедшие за последние десятилетия изменения в области биохимии, физической химии, микроскопии и инженерии привели к значимому росту интереса к свойствам очень малых частиц и возможности их применения в промышленности. В настоящее время доступны разнообразные продукты, предлагаемые на рынке, которые используют термин «нанотехнологии» и включают прозрачные солнцезащитные средства, грязеотталкивающую одежду, самоочищающееся стекло, краски, спортивный инвентарь, а также многочисленные приложения в электронике. Медицинские исследователи используют нанотехнологии для разработки более эффективных и экономичных способов доставки лекарств в определенные ткани, что, например, используется в химиотерапии рака. Исследователи в университетах, на производстве продуктов питания, перерабатывающих предприятиях, занимаются поиском новых возможных подходов для создания более безопасных, более питательных и более привлекательных продуктов с использованием нанотехнологий. Что же такое нанотехнологии?

Нанотехнологии представляют собой направление, качественно отличное от привычных дисциплин. *Нанотехнологии* – это технологии, которые манипулируют единичными объектами размером не более 100 нм и используют их уникальные свойства, возникающие вследствие того, что в наночастицах, благодаря их малым размерам, существенно изменяются физико-химические свойства вещества.

По определению Кима Эрика Дрекслера, нанотехнологии – это ожидаемые технологии производства, которые ориентированы на получение устройств и веществ с заранее заданной атомарной структурой.

Когда мы говорим об объекте нанотехнологии, то в первую очередь имеем в виду линейные размеры объектов – наноскопические размеры $1 \text{ нм} = 10^{\circ} \text{ м}$. С точки зрения размеров к нанообъектам можно отнести атомы (порядок величин о,1 нм), такими же порядками величин оперируют при рассмотрении длины валентных связей и расстояния между атомами в кристаллических решетках молекул. Отдельно можно говорить о структурах живой

клетки: диаметр двухспиральной молекулы ДНК – 2–12 нм; толщина клеточной мембраны – 10 нм; размер вирусов от 20 до 300 нм. Белковые молекулы обычно размером от 10 до 100 нанометров. В сравнении с этими объектами огромными кажутся микроскопические объекты: эритроцит высотой 2500 нм, а диаметр человеческого волоса составляет 60 000 до 120 000 нм. Минимальный размер углеродных нанотрубок, синтезированных в настоящее время, составляет 0,4 нм.

10 ⁻⁹ м (nm)	10 ⁻⁶ м (м т)	10 ⁻³ м (mm)
Аминокислота	Бактерии (0,1–10 м m)	Многоклеточные
глицин (0, 42 нм)	Кишечная палочка	организмы
Нуклеотид цитозин	Escherichia coli	
(0,81 HM)	8000 нм = 8 м т	
Молекула глюкозы	Эритроциты	
(0,9 HM)	(6–8 m m)	
Молекула	Яйцеклетка человека	
хлорофилла (1,1 нм)	(100 m m)	
Белки: инсулин		
человека (2,2 нм),		
гемоглобин (6,5 нм),		
рибосома (30 нм),		
фибриноген (50 нм)		
ДНК, РНК, антитела		
(1–100 HM)		
Вирус гриппа H2N2		
100 нм, бактериофаг		
Т2 (140 нм)		

Нужно помнить, что на наноразмерном уровне уже не применимы обычные макроскопические методы обращения с веществом, при этом на первый план выходят микроскопические явления, которые были раньше практически не заметны из-за больших размеров объекта. Они становятся намного значительнее – их влияние на исследуемые процессы уже нельзя игнорировать, нужно учитывать свойства и взаимодействия отдельных атомов и молекул, молекулярных комплексов, квантовые эффекты.

Материал может иметь разные магнитные, электрические, оптические, механические и химические свойства в зависимости от размера. Например, физические свойства углерода существенно

изменяются, когда атомы этого элемента находятся в форме нанотрубок. В то время как элементарный углерод является плохим проводником электричества и не особо твердым (за исключением алмазов, которые образуются под высоким давлением), агрегаты углеродных нанотрубок во много раз прочнее стальной проволоки и могут нести больше электроэнергии, чем медный провод. Атомы углерода могут также быть организованы в форме наноструктур (фуллерены) и похожи на геодезические купола. Нанотрубки могут быть использованы для хранения водорода для топливных элементов, а фуллерены – как контейнеры, способные переносить различные полезные соединения, такие как лекарства.

Биологические и химические свойства наночастиц также могут отличаться от макроскопической формы этих веществ. Это породило определенные вопросы для производственников и потребителей в области безопасности полученных структур. Будут ли эти наночастицы поступать с большей готовностью через легкие и пищеварительную систему, распространяться в организме, и будет с трудом выводить? Будут ли они метаболизироваться быстрее и каким образом их дозировать? Могут ли композиционные материалы, содержащие наночастицы, выделять эти частицы в окружающую среду, поскольку они постепенно начинают деградировать, и какова будет судьба и экологические последствия дисперсии наночастиц в окружающей среде? Как использовать наноструктуры и наноразмерные биологические структуры в диагностике и лечении различных заболеваний? Все эти вопросы формируют круг тематик нанотехнологии в биологии, или иначе – нанобиотехнологии.

Нанобиотехнология – это область науки на стыке биологии и нанотехнологии включающая как применение нанотехнологических устройств и наноматериалов в биотехнологии, так и использование биологических молекул для нанотехнологических целей. Основные направления развития нанобиотехнологии включают наномедицину, нанодиагностику, трансгенное наноконструирование, нанобионику, нанолекарства, применение нанотехнологий в пищевой промышленности, нанобиотехнологии в экологии.

Целью изучения дисциплины является предоставление обучающимся комплексных современных знаний по биологическим

аспектам применения современных нанотехнологий. Междисциплинарный подход обусловлен знанием фундаментальных наук в применении к инженерным аспектам нанобиотехнологии. В связи с этим основными *задачами* дисциплины являются:

- дать представление о современных направлениях и перспективах развития нанобиотехнологии
- изучить основы применения методов молекулярной биологии; генной, белковой и клеточной инженерии для нужд нанобиотехнологии
- научить проводить поиск и интерпретацию данных литературы по отдельным вопросам нанобиотехнологии, оценки качества и биобезопасности нанотехнологических продуктов.

В результате освоения дисциплины формируются *компетенции* обучающегося:

- ОПК-3– готовность применять фундаментальные математические, естественно научные и обще инженерные знания в профессиональной деятельности;
- ОПК-4 способность сочетать теорию и практику для решения инженерных задач;
- ПК-6 способность использовать на практике современные представления о влиянии микро- и наноструктуры на свойства материалов, их взаимодействии с окружающей средой, полями, частицами и излучениями.

Важным является подготовка студентов-нанотехнологов к специфике разработки и проектирования наноустройств для медицины и биологии.

В первой части пособия представлены материалы, посвященные вопросам фундаментальных понятий нанобиотехнологии. Частным вопросам нанобиотехнологии будет посвящена вторая часть пособия.